MATEMATICA FINANZIARIA E ATTUARIALE A - L

Anno accademico 2021/2022 - 2° anno
Docente: Antonino Damiano Rossello
Crediti: 6
Organizzazione didattica: 150 ore d'impegno totale, 110 di studio individuale, 40 di lezione frontale
Semestre:
ENGLISH VERSION

Obiettivi formativi

  1. Conoscenza e capacità di comprensione (knowledge and understanding): Il corso mira all'acquisizione dei principi teorici concernenti le equivalenze finanziarie tra capitali disponibili in diverse epoche in condizioni di certezza (tassi e loro struttura, leggi di capitalizzazioni, ammortamenti, costituzione di capitale, valutazione prestiti, titoli obbligazionari, analisi degli investimenti) e dell’uso di alcuni strumenti per la gestione del rischio di tasso di interesse (duration e convexity). Inoltre il corso fornisce continui spunti applicativi dei principi teorici, al fine di sviluppare competenze professionali. Per raggiungere tali obiettivi, durante le lezioni frontali si trattano esempi pratici di utilizzo delle tecniche finanziarie nonchè esercizi con soluzione sulli argomenti di teoria. In qualche caso si ricorre all'uso di fogli di calcolo. La verifica dell'apprendimento non è concentrata solamente nella fase conclusiva del corso, in sede di esami, organizzati con prove scritte ed orali; durante l'intero percorso formativo si effettuerà un controllo accurato e continuo della comprensione e dell'effettiva acquisizione da parte degli studenti delle conoscenze trasmesse, stimolandone una proficua ed attiva partecipazione.
  2. Capacità di applicare conoscenza e comprensione (applying knowledge and understanding): Durante il corso si utilizza una metodologia didattica orientata all'acquisizione operativa ("saper fare") degli strumenti finanziari proposti durante l’insegnamento della disciplina, mirando allo sviluppo di una capacità critica dello studente nei confronti delle tematiche trattate, in un continuo processo di interazione di analisi - sintesi. In tal senso è prevista la continua trattazione in aula di esempi tratti dall'applicazione delle nozioni di matematica finanziaria a casi reali.
  3. Autonomia di giudizio (making judgements): L'acquisizione di conoscenze teoriche e capacità operative non è sufficiente ad una completa formazione dello studente. Si intende infatti stimolare anche la capacità di riflessione, acquisizione ed interpretazione delle informazioni e dei dati necessari per impostare, analizzare e risolvere correttamente problemi di valutazione finanziaria. Pertanto, lo studente è addestrato alla ricerca di fonti informative finanziarie appropriate (consultazioni di pubblicazioni specialistiche, banche dati, siti internet, ecc.), e ad un’analisi critica sulla loro attendibilità e significatività.
  4. Abilità comunicative (communication skills): Lo studente dovrà sviluppare capacità di relazionarsi e di trasferire a terzi, con padronanza del linguaggio tecnico-finanziario appropriato, le conoscneze acquisite. Non è sufficiente applicare metodi e tecniche corretti, che ben rappresentano il problema affrontato, occorre anche saper giustificare le valutazioni finanziarie legate a specifici problemi e saper esplicitare le ipotesi adottate in ogni modello finanziario concepito. Durante lo svolgimento delle lezioni questi aspetti verranno sottolineati sollecitando ogni studente a esporre dubbi e critiche sulle tecniche di matematica finanziaria apprese. La prova finale costituisce un'ulteriore momento di approfondimento e di verifica delle diverse capacità di comunicazione effettivamente raggiunte dallo studente.
  5. Capacità di apprendimento (learning skills): La verifica delle conoscenze di matematica finanziaria realmente acquisite verrà effettuata durante l'intero percorso formativo e non soltanto in sede di esame finale, in forma scritta e orale. Il metodo di insegnamento è di tipo modulare, e prevede l'esposizione degli argomenti (alla lavagna o con proieizioni di sliides) partendo sempre da un livello elementare e raggiungendo (se necessario) un livello più sofisticato.

Modalità di svolgimento dell'insegnamento

Lezioni frontali (lavagna, proiezione di slides) durante le quali verranno presentati le principali definizioni delle grandezze finanziarie pertienti il corso. In certi casi verranno presentati e discussi Teoremi, richiedendo allo studente un minimo di sofisticazione matematica. Ove necessario, alcuni delle conoscenze essenziali di matematice verranno richiamati a lezione. Una selezione di esercizi corredati da soluzione verranno presentati a lezione. Alcuni argomenti verranno illustrati mediante l'uso di spreadsheets in Excel.


Prerequisiti richiesti

Pur non essendo previsto alcun prerequisito formale, la conoscenza dei seguenti argomenti di matematica è ritenuta "essenziale". Le quattro operazioni e le loro proprietà; numeri primi, scomposizione in fattori primi, massimo comun divisore e minimo comune multiplo; frazioni e operazioni su frazioni; potenze, radici e logaritmi; monomi, polinomi e scomposizione di polinomi; equazioni di primo e secondo grado; rette, segmenti, angoli, triangoli, rette perpendicolari e parallele. Teorema di Pitagora. Progressioni aritmetiche e geometriche (finite e infinite). E’ utile avere anche la conoscenza del programma di Matemtica Generale dello stesso corso di laurea.


Frequenza lezioni

Fortemente consigliata


Contenuti del corso

PARTE I (3 CFU)

Titolo del modulo: Regimi finanziari, rendite certe, ammortamento e costituzione di capitali

Credito parziale attribuito: 3 CFU

Obiettivi formativi: Fornire le fondamentali nozioni teoriche e le principali applicazioni operative del calcolo finanziario in condizioni di certezza. Molte delle tematiche trattate hanno una fondamentale valenza nella pratica professionale.

Descrizione del programma: Regimi finanziari: Operazioni finanziarie; interesse e sconto; teoria delle leggi finanziarie ed equivalenze finanziarie. Regime dell’interesse semplice, composto, sconto commerciale e loro confronto. Principali proprietà di un qualsiasi regime finanziario. Tassi effettivi, equivalenti, nominali, istantanei. Scindibilità; forza di interesse e di sconto. Rendite certe: definizioni preliminari; rendite discrete, temporanee, perpetue, differite, intere e frazionate, a rate costanti e variabili, rendite continue. Problemi (inversi) relativi alle rendite. Applicazioni ed esempi. Ammortamento di prestiti indivisi e costituzione di capitali: Definizioni preliminari e principali proprietà. Ammortamento a rimborso unico, a rate costanti e a rate variabili (in progressione); a quote capitale costanti, con quote di accumulazione (a due tassi). Piani di ammortamento a tasso fisso e a tasso variabile. Costituzione di capitali a tempo discreto e piani di costituzione, a tasso fisso e a tasso variabile. Mutui.

PARTE II (3 CFU)

Titolo del modulo: Valutazione di operazioni finanziarie e degli investimenti reali

Credito parziale attribuito: 3 CFU

Obiettivi formativi: Far acquisire i principi fondamentali delle valutazioni finanziarie in condizioni di certezza, sia con riferimento al mercato dei capitali (obbligazioni) che a progetti di investimenti reali. Introdurre alcune nozioni teoriche ed i principali strumenti operativi e per l’immunizzazione dal rischio di tasso.

Descrizione del programma: Valutazione dei prestiti e di operazioni finanziarie. Nuda proprietà ed usufrutto. Criterio del valore attuale netto; criterio del rapporto (profitability index); tasso interno di rendimento; tempo di recupero. Confronto tra i differenti criteri. Valutazione di titoli obbligazionari: tipi fondamentali di obbligazioni; corsi e rendimento; rimborso di prestiti obbligazionari. Struttura per scadenza dei tassi di interesse; tassi spot e tassi forward. Immunizzazione dal rischio di tasso: Principali indici temporali e di sensitività di un cash flow. Duration, convexity e principi di immunizzazione dal rischio di tasso. Applicazioni ed esempi.


Testi di riferimento

  1. S. A. Broverman, Matematica Finanziaria, I edizione, Egea, 2019 (obbligatorio)


Programmazione del corso

 ArgomentiRiferimenti testi
1Operazioni finanziarie; interesse e sconto; tasso d’interesse e tasso di sconto; coefficiente di capitalizzazione e coefficiente di attualizzazione.Broverman, CAP 1 
2Leggi finanziarie ed equivalenze finanziarie. Regime dell’interesse semplice e composto.Broverman, CAP 1 
3Regime dell’interesse commerciale. Confronto tra il regime di interesse semplice, composto e commerciale. Esempi.Broverman, CAP 1 
4Tassi di interesse (sconto) effettivi, equivalenti, nominali, istantanei, medi. Inflazione e tassi d'interesse.Broverman, CAP 1 
5Scindibilità; forza di interesse e di sconto.Broverman, CAP 1 
6Valutazione di rendite certe. Rendite discrete: valore attuale e valore futuro.Broverman, CAP 2 
7Rendite temporanee e perpetue; differite; intere e frazionate; a rate costanti e variabili. Rendite continue. Problemi inversi relativi alle rendite. Esempi.Broverman, CAP 2 
8Ammortamento di prestiti indivisi (restituzione di un prestito) e costituzione di capitali: Definizioni preliminari; principali proprietà.Broverman, CAP 3 
9Ammortamento a rimborso unico, a rate costanti, a quote capitale costanti, con quote di accumulazione (a due tassi).Broverman, CAP 3 
10Piani di ammortamento a tasso fisso e a tasso variabile, con preammortamento, con adeguamento del debito residuo.Broverman, CAP 3 
11Piani di costituzione, a tasso fisso e a tasso variabile.Broverman, CAP 3 e dispense docente 
12Valutazione di prestiti e operazioni finanziarie in generale (cash flow). Esempi.Broverman, CAP 5 e dispense docente 
13Nuda proprietà ed usufrutto. Valutazione di alcune classi di operazioni finanziiarie.Broverman, CAP 5 e dispense docente 
14Criterio del valore attuale netto; criterio del rapporto costi/benefici (profitability index); tasso interno di rendimento (di costo); tempo di recupero. Esempi.Broverman, CAP 5 e dispense docente 
15Valutazione dei titoli obbligazionari: mercato dei capitali e tipi di obbligazioni; corsi e rendimento; acquisto e rimborso.Broverman, CAP 4 
16Rimborso di titoli obbligazionari. Applicazioni ed esempi.Broverman, CAP 4 
17Sruttura a termine dei tassi di interesse primi esempi.Broverman, CAP 6 
18Tassi spot, tassi a termine (forward) e (non) arbitraggio. Esempi.Broverman, CAP 6 
19Duration, modified duration e convexity.Broverman, CAP 7 
20Principi di immunizzazione dal rischio di tasso d'interesse. Applicazioni ed esempi.Broverman, CAP 7 

Verifica dell'apprendimento

Modalità di verifica dell'apprendimento

Discussione di concetti chiave e metodi di problem solving durante le lezioni, in base alla programmazione degli argomenti. Previa prenotazione nell'apposito Portale Studenti, ad ogni data ufficiale di esami (appello) verrà fissata una suddivisione in turni collocati nei gg successivi (c.ca 10/15 studenti per turno). Durante ogni turno, allo studente verranno somministrate 3 domande a cui si rispondere per iscritto, usando l'appropriato linguaggio matematico. Lo studente nella posizione " laureando" deve chiedere al docente di sostenere l'esame il giorno dell'appello.


Esempi di domande e/o esercizi frequenti

  • Cosa sono l’interesse, lo sconto, il montante e il valore attuale?
  • Cosa sono il tasso di interesse e il tasso di sconto e qual è la loro relazione funzionale?
  • Cosa è una legge di capitalizzazione?
  • Cosa sono i regimi di capitalizzazione semplice, composta e commerciale?
  • Sa confrontare i regimi di capitalizzazione, semplice, composta e commerciale?
  • Quando due tassi si dicono equivalenti?
  • Cosa sono la forza di interesse e la forza di sconto?
  • Cosa è la scindibilità?
  • Qual è la condizione necessaria e sufficiente affinchè una legge di capitalizzazione sia scindibile?
  • Come si determina il valore attuale e il montante di una rendita posticipata di n rate costanti?
  • Qual è il valore attuale e il montante di una rendita posticipata di n rate in progressione aritmetica?
  • Qual è il valore attuale e il montante di una rendita posticipata di n rate in progressione geometrica?
  • Quali sono le differenze tra ammortamento francese, italiano, a due tassi?
  • Cosa sono la nuda proprietà e l’usufrutto?
  • Cosa sono il criterio del tasso interno di rendimento e del valore attuale netto?
  • Cosa sono i tassi a pronti e i tassi a termine e che relazione esiste tra di loro?
  • Cosa sono la duration e la convexity?
  • E' in grado di enunciare il teorema di Redington?
  • A parità delle altre condizioni, che relazione esite tra la durata di un ammortamento e ammontare della rata?
  • Come si determina la sensitività della rata rispetto alle altre variabili di un ammortamento o di un piano di accumulazione?
  • Come si valuta un’operazione finanziaria con flussi nominali, tenendo conto del tasso di inflazione?
  • Cosa sono il rendimento nominale e reale di un titolo?
  • Quali sono le principali morfologie della struttura dei tassi a pronti?
  • E’ possibile prevedere l’evoluzione della struttura dei tassi di interesse?